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Analytic methods are developed for solving the contact problem of the rolling of an elastic cylinder along a viscoelastic layer 
bonded to an elastic b ~  with the aim of studying the effect of the mechanical and geometric characteristics of their surface 
layers on the contact interaction parameters and the coefficient of rolling friction. A Maxwell model is used to describe the 
mechanical properties of the visco-elastic layer. The problem is treated assuming that there is partial siding in the contact area 
which makes it possible to treat the resistance to rolling as the overall result of the manifestation of the imperfect elasticity of 
the surface layers of the interacting bodies and sliding friction in the contact area. The solution of the problem of the total sliding 
of a cylinder on an elastic base covered with a thin visco-elastic layer is obtained as a special case. 

The study of the effects of coatings and various surface films on the contact characteristics and resistance 
to motion accompanying the relative rolling or sliding of the interacting surfaces, when their properties 
of imperfect elasticity are clearly exhibited, is important in problems of increasing their useful lifetime 
and reducing fdctian and wear. 

The stress-strain state of a visco-elastic strip bonded to a visco-elastic half-plane and subjected to 
the action of a moving load has been investigated in [1, 2] using the Fourier transform method. A 
.numerical algorithm has been proposed [3] for solving a contact problem involving laminated elastic 
and visco-elastie bodies under conditions of roiling friction. However, it is difficult to use this algorithm 
when analysing contact characteristics and their dependence on all of the parameters of the problem. 
The dependence of the stressed state of a visco-elastic strip on time when a rigid cylindrical punch is 
embedded in it has been studied in [4]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We will consider the contact problem in a planar formulation for an elastic cylinder and a base 
consisting of a visco-elastic strip of thickness h bonded to an elastic half-plane (Fig. 1). The cylinder 
roils or slides along; the base at a constant linear velocity Vand angular velocity co. The contacting surface 
of the cylinder is described by the functionf(x) = x~/(2R) (R is the radius of the cylinder). 

We introduce a tixed (x',y') system of coordinates connected with the base and a moving (x,y) system 
of coordinates connected with the moving cylinder. Here 

x ' = x + V t ,  y ' = y  

For uniform motion of the cylinder, the motion of the medium can be considered to be steady with 
respect to the system of coordinates (x,y). In this system of coordinates, the displacements and stresses 
do not depend on time explicitly and are functions of the coordinates (x, y). 

Boundary conditions. Following Reynolds, we subdivide the contact area (--a, b) into sliding zones 
(S) and adhesion zones (A). In the S zones, the sliding friction is modelled using the Coulomb- 
Amonton law 

Ix(x)l= ~ap(x) when y = 0, x ~ S (1.1) 

where x(x) andp(x) are the shear and normal stresses on the contact area, respectively. In theA zones 
the tangential velocities of the contacting points of the cylinder and visco-elastic layer are equal. Hence, 
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Fig. L 

in the (x',y') system of coordinates, the tangential displacements u 1 and u of the cylinder and the base, 
respectively, satisfy the relation 

du V foR+ dut when y=0 ,  xEA (1.2) 
dt dt 

In the (x, y) system of coordinates, Eq. (1.2) has the form 

- - - + - - = - 8  when y=0 ,  x e A  8 = V - -  R (1.3) 
3x ~x 

where 8 is the magnitude of the relative sliding. 
Furthermore, in the zones of adhesionA, the normal and shear stresses are related by the inequality 

I x(x)l < ~tp(x) (1.4) 

Note that relation ( 1.1 ) holds over the whole of the contact area (--a, b) in the ease of complete sliding. 
It follows from the contact condition that the relation 

~1 (x) + u2 (x) + 1)3 (X) = Y - x 2 / (2 R) (1.5) 

is satisfied for all points of the contact area (--a, b). In (1.5), 'u l ,  "2 and a) 3 are the normal displacements 
of the boundary points of the cylinder, of the elastic half-plane and of the layer, respectively (which 
are assumed to be positive for each body), and y is the penetration of the cylinder into the base. 

It is assumed that the visco-elastic layer is bonded to the elastic half-plane and that the following 
boundary conditions holds at the interface (y = h) 

u(x,h-)=u(x,h+), u(x,h-)='o(x,h +) 
(1.6) 

p (x ,h - )  = p(x,h+), x (x ,h - )  = x(x,h +) 

A mechanical model o f  the visco-elastic layer. Assuming that the thickness h of the visco-elastic layer 
is much less than the width of the contact area, we shall simulate its normal and tangential compliance 
using a one-dimensional Maxwellian model, namely 

fi3=h(lx+l ;cl, "63=h( 1 1 .) (1.7) 
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where u3 and ~3 are the tangential and normal displacements of the boundary of the layer 0' = 0) and 
tin, Z,, and rl~, 7q are 'the visco-elastic characteristics of the layer in the normal and tangential directions, 
respectively. A similar rod model has been used previously in the case of an elastic base in [5]. 

In the (x, y) system of coordinates relations (1.7) have the form 

3u 3 = -  h,,x(x)+ h dx(x) (1.8) 
3x V'q,~ Z,~ dx 

~ = -  h p(x)+ h dp(x) (1.9) 
~x ¢qn ~. dz 

In the model being considered it is assumed that the normal and shear stresses at the upper boundary 
of the layer 0' = 0) and at the boundary between the layer and the elastic half plane 0' = h) have the 
same values. The gradient of the displacements of the boundary of the elastic bodies (of the cylinder 
and the elastic half-plane) is therefore defined by the following relations (i = 1, 2) 

~u i (l-2v~)(l+vi) 2(I-v2) i x(S) ds (1.10) 
~X = - -  E i p (  x ) ff'Ei - a  X - S 

~t'~i =( l -2v~) ( l+v i ) ' c (x )  2(1-v/2) ~ P(S) ds (1.11) 
~x Ei r,.Ei _ , , x - s  

Equations (1.8)-(1.11), together with the boundary conditions (1.1), (1.3) and (1.5), are used to find 
the normal and shear stresses in the contact area (-a, b). 

2. ANALYSIS OF THE CONTACT P R E S S U R E S  

In order to simplify the calculations, we shall neglect the effect of the shear contact stresses on the 
normal contact stresses. Then, using relations (1.5), (1.9) and (1.11) (the latter is considered for x(x) 
= 0) and introducing the new variable ~, which is related to x by the equality 

b - a + a + b ~  
x= 2 2 

we obtain 

~ P(a)de:~____~.+ KP(~) -C  P'(~) = D(L +~) (2.1) 

2 ( b - a  a+b ) 
P(~) n.F.* p 2 + 2 ~ '  

K= hnE* C= hnE* D= a + b L= b - a 
2 Vvl,, ' 2R~. n 2R a + b 

Bearing in mind the condition that the pressure at the ends of the contact area between, the cylinder 
and the base is eqmd to zero, that is, P(-1) = P(1) = (0), we transform Eq. (2.1) to a Fredholm equation 
of the second kind 

i,f F(a)[lnt~,. -ol+ ~ sgn(~-z o)-l+o2 in(1 + a)-1-02 in(1-•)+ -~]da _C F(~)= 

(F(~) = P'(~)) (2.2) 

It follows from the condition of equilibrium of the normal forces applied to the cylinder that the 
required function F(~) also satisfies the relation 

I 

W = - D  I sP(s)ds 
- I  

where W = 2w/(~d~E*) is the dimensionless normal load applied to the cylinder. 

(2.3) 
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Equations (2.2) and (2.3) are used to find the contact pressure P(~), the size of the contact area D, 
the displacement of the contact area L and the maximum penetration of the cylinder into the visco- 
elastic layer Amax 

P(~)=!j F(o)do, D=-W[) I pF(p)dp]-' 
i 

L = 1.-~- J F(o)[(l + o)ln(l + o)+(l - o )  ln (1 -o) -  Ko]do 
2D -I 

Area x =max~3(x) = Dmax~(~), - 1 < ~ < 1  
R 

(2.4) 

Note that, if one neglects the elasticity of the cylinder and the base and determines the pressure in 
the region of contact from the solution of Eq. (1.9) with boundary conditions (1.5), we shall have 

' :  ,1 rL  De ~ j  De= = (2.5) KD ~,~(a+b)) 

where De is the Deborah number. 

3. ANALYSIS OF THE SHEAR STRESSES IN THE CONTACT AREA 

If the normal contact pressures are known, the shear stresses in the contact area can be obtained 
from relations (1.1), (1.3), (1.6), (1.8) and (1.10). The following integral equation for determining the 
function x(x) holds in the adhesion zone A 

h "C(x)4 h dx(x) 2 ~ x(S) d s = _ 8 _  2~. 
- Vrl~ ~.~ dx xE* _, x -  s 7rE p ( x ) ,  x ~ A (3.1) 

J3 = roE" [(1 - 2vj )(1 + v t ) / E  I - ( !  - 2v2)(1 + v2) I E2]I 2 

Using the method described above to analyse contact pressures, Eq. (3.1) can be reduced to the form 

where 

p(~) = 0, ~ e A~ (3.2) 

p(~)=6+[~P(~)÷--~-@(~)- ~ Inl~-tl+ sgn(~-t) (t)dt 
Itl _| 

2 ['~l--a a;b~) C1__2,~.... ¢}(g)=q'(g)' q t g ) = ~ - ~ L '  2 '+ ' /mE* 
h,~e 

K t = ~  
2Vrl~ 

(3.3) 

Moreover, in the adhesion zone A~, the shear stresses satisfy the inequality [ q(~) I < BP(~), which 
follows from (1.4). 

Relation (1.1) serves to determine the tangential stresses in the zones S where sliding occurs. 
Furthermore, in these zones, the shear stresses are opposite to the sliding direction, which leads to the 
relation 

"c(x)=pP(x)sgn(d~x~-duldx +dU~dx +8) 

Substituting (1.8) and (1.10) into this and using (3.3), we obtain 
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q(g) = pP(~)sgnp(g), g e Sg (3.4) 

q ( ~ , ) = p . . , ( ~ , ) ,  i l l . 2  . . . . .  k (3.5) 

The continuity equation 

holds at the points ,~ where one zone changes into another. 
Equations (3.2), (3.4) and (3.5) are used to find the shear stresses in the contact area and, also, the 

positions and dimensions of the zones where there is adhesion and sliding. An iterative process was 
used for the numerical analysis of the equations obtained. 

The problem of finding the shear stresses is simplified considerably by assuming that 2~/E* ,~ I and 
[3 = 0. In this case, Eqs (3.2) and (3.4) reduce to the following equations 

q(~)fp.P(~)sgn[-q(~)+De,-~+B], 
- hxE" ) 

(3.6) 

~ Sg (3.7) 

Analysis of Eqs (3.6) and (3.7) shows that, in the case being considered, the contact area is subdivided 
into two zone (adh(:sion and sliding) or three zones (sliding, adhesion and sliding). 

In the case where there are two zones the shear stresses in the contact area are defined by the 
expression 

q(g)=, pP{g), gE (-Lg,) { ~ ( x )  = exp(~-~, ) I x  
e(! - K(g- l)), g G (g~, l) 

(3.8) 

and the transition point ~1 is found from the relation 

e(l - K(~ ,  - ~)) = ~ v ( ~ ,  ) 

This case occurs if 

(3.9) 

De, gP' ( l -0)+  B<~ o (3.10) 

In the opposite case, that is, when there are three zones, we have the following expression for 
determining the shear stresses 

-~PP(~) '  ~ e ( - I ' ~ ' ) u ( ~ 2 ' l )  (3.11) 

where ~1 and ~2 arc: the solution of the equations 

B + [IzP(~2 ) -  B]g(~, - ~2 ) ffi laP(~ ) (3.12) 

P-P(~2)- B -  I~ De, P'(~2 ) = 0 (3.13) 

When there is no visco-elastic layer, only two zones (adhesion and sliding) exist in the contact area 
when an elastic cylinder rolls over a base made of the same material (6 = 0). 
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4. A N A L Y S I S  O F  T H E  R O L L I N G  R E S I S T A N C E  

A rolling cylinder is acted u p o n  by a no rma l  active load w and a tangent ia l  active load Q, a m o m e n t  
m and,  also, the react ions  o f  the base  wl and Q1 which arise as the result  of  the  act ion o f  the no rma l  
and  shear  stresses in the contac t  a rea  (Fig. 1). The  equat ion 

b 

m -  ~ xp(x)dx +QiR=O 

follows f rom the condi t ion of  equi l ibr ium o f  the  forces and moment s .  
Using the no ta t ion  in t roduced  in (2.1) and (3.3), we obtain  the following expressions for  the 

d imensionless  magni tudes  of  the  resistive force  and m o m e n t  of  rolling friction 

r = = - o  i 2m D 2 I 

= - - -  ~ (~ + L) 2 F(~)d~ - T (4.1) 
~ E  -I = ~ 2 -i 

T h e  first (or  second)  equa t ion  o f  (4.1) can also be  used to find the magn i tude  o f  the relat ive sliding 
5 (1.3), if the  value o f  the tangent ia l  force  T (or  the m o m e n t  M)  is known.  

W h e n  T = ~tW, sliding occurs  over  the whole  contact  area. The  case when  T = 0 cor responds  to pure  
rolling. T h e  coefficient  o f  rolling friction is found  f rom the relat ion 

I~R = M/W (4.2) 

where the values of  M and Ware found using the second formula in (4.1) and formula (2.3) respectively. 

5. R E S U L T S  O F  C A L C U L A T I O N S  

Graphs of the contact pressure function P(~)/Po (Po is the Hertz maximum contact pressure) constructed for 
C = O.1,D = 0.1 and different values of the parameter K are shown in Fig. 2. The solid curves correspond to the 

'general case of the contact interaction of elastic bodies when there is a visco-elastic layer between them, and 
the dashed curves were constructed using formula (2.5) in the case when the elastic properties of the indentor 
and the base areneglected. The results show that, as the velocity Vof  displacement of the indentor decreases, that 
is, as the parameter K increases (see 2.1 )), the curve representing the pressure distnq~ution under the punch becomes 
more asymmetric. For a fixed size of the contact area and specified visco-elastic characteristics of the layer, the 
contact pressures and their maximum values depend very much on the elastic properties of  the indentor and 
the base at translational velocities corresponding to small values of K. However, when the velocity decreases 
(K = 10), the difference between the pressure distribution in the two cases becomes negligibly small. Hence, a 
visco-elastic layer mainly influences the contact pressure distribution at low velocities of motion• 
• Graphs of the dtmensionless" length. D/Do of thel/2contact. . area (Do is the dimensionless, length of the contact area 
m the case of the Hertz formulation, Do = ( 2 W ) ) ,  its displacement L and the maxunum penetration Am= (2.4) 
of the cylinder into the visco-elastic layer against the parameter C/Kwhen W = 0.001 for C = 1 (curve 1) and ¢~ 
ffi 0.1 (curve 2) are plotted in Fig. 3. The parameter C/K = T1,V/(Ttr, R) depends on the relaxation time rlJAn and 
the velocity V. It is seen that, as the parameter C/K increases, the length of the contact area decreases and tends 
to a constant value (D ffi 1.49 Do and D = 2.71 Do when C = 0.1 and C = 1, respectively). For small values of 
the parameter C/K, the length of the contact area increases considerably, especially as the parameter C increases 
(Fig. 3a). We note that the parameter C depends on the thickness of the layer and the relative elastic characteristics 
of the layer and the base. As the relaxation time becomes shorter and the translational velocity of the indentor 
decreases, that is, as the parameter C/K decreases, there is an increase in the displacement L of the contact area 
(Fig. 3b) and the maximum penetration Am=, of  the cylinder into the visco-elastic layer (Fig. 3b), which is due to 
the manifestation of the viscoelastic properties of the intermediate layer. In the case of an increase in the parameter 
C/K, the displacement of the contact area becomes negligibly small for all values of the parameter C. 

The results of the calculations of the shear stresses in the contact area between a rolling cylinder and a base 
with a surface layer on it, based on an analysis of Eqs (3.2), 0 .4)  and 0.5),  are shown in Fig. 4. The properties of 
the surface viscoelastic layer in this analysis are described by the parameter 0 ffi rl~Ttn/(~2q) which is the ratio of 
the relation times in the tangential and normal directions (0 = CIKI(CK1)) and, also, by the dimensionless parameter 
C1 (3.3), which depends on the relative thickness of the layer and the relative elastic characteristics of the layer 
and the base. Plots of the distributions of the tangential contact stresses were constructed for the following values 
of  the dimensionless parameters C -- 0.1, K ffi 1, W--  0.01,1 a -- 0.1, C1 -- 0.1. Curve 1 corresponds to T -- 0.6laW, 
0 = 0.1, 13 ffi -0.4, curve 2 to T -- 0.8ttW, 0 = 1, 13 = -0.4, curve 3 to T -- 0.SgtW, 0 -- 0.1 1~ -- -0.4, curve 4 to T 
= 0.81xW, 0 = 0.1, 13 = 0.4 and curve 5 to T = ~tW. 

The results show that, as the parameter 0 increases, there is an increase in the values of the maximum shear 
stresses in the contact area and a decrease in the size of the adhesion zone. Furthermore, it was established that, 
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as the value of the tanlgenfial force T becomes smaller, the contact passes from a completely sliding contact (curve 
5) to the three-zone and, then, to the two-zone cases. The same results were obtained qualitatively in calculations 
using formulae (3.8)-~[3.13) for the special case of identical elastic characteristics of the cylinder and the base (13 
ffi 0) and 7h/E* "~ 1. ~ t h  the same layer characteristics (C1 ffi 0.1 and 0 = 0.1), a change in the relative elastic 
characteristics of the cylinder and the base from p = --0.4 (curve 3) to p = 0.4 (curve 4) leads to a transition from 
a three-zone contact to a two-zone contact. 

Graphs of the coefficient of rolling friction, calculated using formula (4.2), against the dimensionless para- 
meter C/K for W = 0.001 and T = 0 are also shown in Fig. 4. The coefficient of rolling friction for the model of a 
viscoelastic layer under consideration decreases monotonically as the parameter C/K increases and Ixs ~ 0 as 
CIK ~ +oo. 
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6. C O N C L U S I O N S  

The following conclusions can be drawn from the results of the analytic and numerical analysis of  
the solution of the contact problem on the rolling (sliding) of  an elastic cylinder along the boundary 
of  a visco-elastic layer lying on an elastic support. 

1. The normal and shear stresses in the contact area can be described using the dimensionless 
parameters C, K, 0, C1, [3, Ix, W, T. 

2. The ranges of  variation of  the parameters C, K, 0 and C1, describing the relative properties of  the 
visco-elastic layer, for which the thin surface layer has a substantial effect on the contact characteristics 
have been established. 

3. As the sliding velocity increases, the effect of the properties of  the surface layer on the contact 
characteristics decreases. 

4. The elastic characteristics of the indentor and the base turn out to have a relatively substantial 
effect on the distribution of  the normal and shear stresses in the contact area, which means that they 
should be taken into account when formulating the problem. 

This research was carried out with the financial support of  the Russian Foundation for Basic Research 
(94-01-00386-a). 
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